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EXPLICIT PARALLEL RESOLVENT METHODS FOR SYSTEM OF
GENERAL VARIATIONAL INCLUSIONS

Z.Y. HUANG1, M.A. NOOR2

Abstract. In this paper, we introduce and consider a new system of extended general vari-

ational inclusions involving eight different operators. Using the resolvent operator techniques,

we show that the new system of extended general variational inclusions is equivalent to the

fixed point problem. We prove the strong convergence of some new explicit iterative parallel

algorithms using resolvent methods under certain conditions. Our results improve and extend

the recent results by Noor and Noor [11].
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1. Introduction

Inspired and motivated by current research in this area, we introduce and consider a new sys-
tem of extended general variational inclusions involving eight different nonlinear operators. This
class of system includes the system of general variational inclusions involving seven operators
introduced by Noor and Noor [11]. Using the resolvent technique, we have shown that the new
system of extended general variational inclusions are equivalent to fixed point problems. This
alternative equivalent formulation is used to suggest and analyze some new explicit iterative
algorithms for solving this system of variational inclusions. We would like to emphasize that
these explicit iterative algorithms are distinctly different from the known methods of Noor and
Noor [11] and Noor et al. [13,14]. We suggest and analyze some new explicit iterative parallel
algorithms for solving this system. We also prove the strong convergence of the proposed itera-
tion algorithms under suitable conditions. Our results represent a refinement and improvement
of the recent results of Noor and Noor [11]. The interested readers are encouraged to find new,
novel and innovative applications of variational inequalities and optimization problem in pure
and applied sciences. The numerical implementation of the new proposed methods in this paper
is another direction for further research.
Let K be a nonempty closed and convex set in a real Hilbert space H, whose inner product and
norm are denoted by 〈·, ·〉 and ‖.‖ respectively. Let T1, T2, A, B, g1, g, h, h : H → H be eight
nonlinear operators.
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We consider the problem of finding x∗, y∗ ∈ H such that
{

0 ∈ ρT1(y∗) + ρA(g1(x∗))− g(y∗) + g1(x∗), ρ > 0,

0 ∈ ηT2(x∗) + ηB(h1(y∗)) + h1(y∗)− h(x∗), η > 0,
(1)

which is called the system of general variational inclusions involving eight different operators.
Let us discuss some special cases of the system of general variational inclusions (1).
(i) If B = A, then (1) is equivalent to finding x∗, y∗ ∈ H such that

{
0 ∈ ρT1(y∗) + ρA(g1(x∗))− g(y∗) + g1(x∗), ρ > 0,

0 ∈ ηT2(x∗) + ηA(h1(y∗)) + h1(y∗)− h(x∗), η > 0,

which is called the system of general variational inclusions involving seven different operators
studied by Noor and Noor [11].

(ii) If A(·) = ∂φ1(·), B(·) = ∂φ2(·), the subdifferential of proper, convex and lower-semicontinuous
functions, then (1) is equivalent to finding x∗, y∗ ∈ H such that ∀x ∈ H,

{
ρT1(y∗) + g1(x∗)− g(y∗), g(x)− g1(x∗) ≥ ρφ1(g1(x∗))− ρφ1(g(x)), ρ > 0,

ηT2(x∗) + h1(y∗)− h(x∗), h(x)− h1(y∗) ≥ ηφ2(h1(y∗))− ηφ2(h(x)), η > 0,
(2)

which is called the system of mixed general variational inequalities involving different operators
introduced by Noor [8-10].

(iii) If φ is an indicator function of a closed and convex set K in H, and g1 = g = h1 = h = I,
then (2) is equivalent to finding x∗, y∗ ∈ H such that

{
〈ρT1(y∗, x∗) + x∗ − y∗, x− x∗〉 ≥ 0, for all x ∈ H and for ρ > 0,

〈ηT2(x∗, y∗) + y∗ − x∗, x− y∗〉 ≥ 0, for all x ∈ H and for η > 0,

which is called the system of nonlinear variational inequalities involving two different nonlinear
operators studied by Huang and Noor [4].

This shows that the system of extended general variational inclusions involving eight different
operators (1) is more general and includes several classes of variational inclusions or variational
inequalities as special cases. For the applications, formulation, numerical methods and other
aspects of variational inequalities, see [1-18].

Definition 1.1. Let µ > 0 be a constant. A mapping T : H → H is called µ-Lipschitizian iff
for all x, y ∈ H one has

‖Tx− Ty‖ ≤ µ‖x− y‖.

Definition 1.2. Let r > 0 be a constant. A mapping T : H → H is called r-strongly monotonic
iff for all x, y ∈ H, one has

〈Tx− Ty, x− y〉 ≥ r||x− y||2.

Definition 1.3. Let γ > 0, r > 0 be constants. A mapping T : H → H is called relaxed
(γ, r)-cocoercive iff for all x, y ∈ H, one has

〈Tx− Ty, x− y〉 ≥ −γ||Tx− Ty||2 + r||x− y||2.

Clearly a r-strongly monotonic mapping is a relaxed (γ, r)-cocoercive mapping, but the con-
verse is not true.
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2. Fixed point iteration algorithms

We need the following well known concepts and results.

Definition 2.1. [1] If A is a maximal monotone operator on H, then for any constant ρ > 0,
the resolvent operator associated with A is defined by

JA(u) = (I + ρA)−1(u), for all u ∈ H, (3)

where I is the identity operator. It is well known that a monotone operator is maximal if and
only if its resolvent operator is defined everywhere. In addition, the resolvent operator is a
single-valued and nonexpansive, that is, for all u, v ∈ H,

‖JA(u)− JA(v)‖ ≤ ‖u− v‖.
Now we are in position to prove that any solution of systems of extended general variational

inclusion (1) is exactly a solution of some fixed point problems.

Lemma 2.1. If the operators A, B are maximal monotone, then (x∗, y∗) ∈ H is a solution of
(1), if and only if, (x∗, y∗) ∈ H is a solution of the following fixed point problem:

{
g1(x∗) = JA[g(y∗)− ρT1(y∗)],

h1(y∗) = JB[h(x∗)− ηT2(x∗)].
(4)

Proof. (x∗, y∗) ∈ H is a solution of (1),

⇐⇒
{

g(y∗)− ρT1(y∗) ∈ (I + ρA)(g1(x∗)),

h(x∗)− ηT2(x∗) ∈ (I + ηB)(h1(y∗)),

⇐⇒
{

g1(x∗) = JA[g(y∗)− ρT1(y∗)],

h1(y∗) = JB[h(x∗)− ηT2(x∗)].

The desired result. ¤

Lemma 2.1 is used to suggest a new explicit fixed point iteration algorithm for solving the
system of extended general variational inclusions (1) since we can rewrite (4) in the following
form. {

x∗ = (1− αn)x∗ + αn(x∗ − g1(x∗)) + αnJA[g(y∗)− ρT1(y∗)],

y∗ = (y∗ − h1(y∗)) + JB[h(x∗)− ηT2(x∗)],

where αn ∈ (0, 1] for all n ≥ 0 satisfies some certain conditions.
This equivalent formulation enables us to suggest the following explicit fixed point algorithm

for solving (1), which is called parallel algorithm.

Algorithm 2.1. For arbitrarily chosen initial points x0, y0 ∈ K, compute the sequences {xn}
and {yn} by

xn+1 = (1− αn)xn + αn(xn − g1(xn)) + αnJA[g(yn)− ρT1(yn)],

yn+1 = (yn − h1(yn)) + JB[h(xn)− ηT2(xn)],

where αn ∈ (0, 1] for all n ≥ 0 satisfies some certain conditions.

For g1 = g and h1 = h, then Algorithm 2.1 reduces to the following algorithm for (1).



162 TWMS J. PURE APPL. MATH., V.4, N.2, 2013

Algorithm 2.2. For arbitrarily chosen initial points x0, y0 ∈ K, compute the sequences {xn}
and {yn} by

xn+1 = (1− αn)xn + αn(xn − g(xn)) + αnJA[g(yn)− ρT1(yn)],

yn+1 = (yn − h(yn)) + JB[h(xn)− ηT2(xn)],

where αn ∈ (0, 1] for all n ≥ 0 satisfies some certain conditions.

For g1 = g, h1 = h, and A = B, then Algorithm 2.1 reduces to the following algorithm for
(1).

Algorithm 2.3. For arbitrarily chosen initial points x0, y0 ∈ K, compute the sequences {xn}
and {yn} by

xn+1 = (1− αn)xn + αn(xn − g(xn)) + αnJA[g(yn)− ρT1(yn)],

yn+1 = yn − h(yn) + JA[h(xn)− ηT2(xn)],

where αn ∈ (0, 1] for all n ≥ 0 satisfies some certain conditions.

For g1 = g, h1 = h, and αn ≡ 1 for all n ≥ 0, then Algorithm 2.1 reduces to the following
algorithm for (1).

Algorithm 2.4. For arbitrarily chosen initial points x0, y0 ∈ K, compute the sequences {xn}
and {yn} by

xn+1 = xn − g(xn) + JA[g(yn)− ρT1(yn)],

yn+1 = yn − h(yn) + JB[h(xn)− ηT2(xn)].

Let us recall the Algorithms studied by Noor and Noor [11] for the special case as A = B.

Algorithm 2.5. [11, Algorithm 3.1] For arbitrarily chosen initial points x0, y0 ∈ K, compute
the sequences {xn} and {yn} by

xn+1 = (1− αn)xn + αn(xn+1 − g1(xn+1)) + αnJA[g(yn)− ρT1(yn)], (5)

yn+1 = yn+1 − h(yn+1) + JA[h1(xn+1)− ηT2(xn+1)], (6)

where αn ∈ (0, 1] for all n ≥ 0 satisfies some certain conditions.

For g1 = g and h1 = h, then Algorithm 2.5 reduces to the following algorithm.

Algorithm 2.6. [11, Algorithm 3.2] For arbitrarily chosen initial points x0, y0 ∈ K, compute
the sequences {xn} and {yn} by

xn+1 = (1− αn)xn + αn(xn+1 − g(xn+1)) + αnJA[g(yn)− ρT1(yn)],

yn+1 = yn+1 − h(yn+1) + JA[h(xn+1)− ηT2(xn+1)],

where αn ∈ (0, 1] for all n ≥ 0 satisfies some certain conditions.

Remark 2.1. We would like to emphasize that Algorithms of [11] are actually implicit fixed
point iteration algorithms, since at each iteration step, we need to solve nonlinear equations to
find the values of xn+1 and yn+1. For example, assume that xn and yn are given in Algorithm
2.5, in order to get the new iterative points, we have to solve the nonlinear equations (5) and
(6) for the values of xn+1 and yn+1. That is, we need to solve xn+1 and yn+1 in sequence
at every iterative step. This is a real hard work if g or h is not invertible, even much more
difficult than the original problem (1). Moreover, our Algorithms are much easier in implement
of computation than Algorithms in [11] and our computational workload is less than those of [11].



Z.Y. HUANG, M.A. NOOR: EXPLICIT PARALLEL RESOLVENT METHODS... 163

From the above discussion, it is clear that Algorithm 2.1 is quite general and includes several
new and previously known algorithms for solving systems of general variational inclusions (1).

Remark 2.2. We now consider some numerical comparisons. From (5), we have
It is easy to rewrite (5) into

(1− αn)xn+1 = (1− αn)xn − αng1(xn+1) + αnJA[g(yn)− ρT1(yn)],

which can be written as follows if αn ∈ (0, 1),

(I +
αn

1− αn
g1)(xn+1) = xn +

αn

1− αn
JA[g(yn)− ρT1(yn)], (7)

where I is the identity matrix in Rn. In (7), if (I + αn
1−αn

g1) is not invertible, then xn+1 can not
be calculated easily. Even if (I+ αn

1−αn
g1) is invertible, we have to find the inverse of (I+ αn

1−αn
g1),

which is itself difficult problem. In the mean time, (6) can be written as

h(yn+1) = JA[h1(xn+1)− ηT2(xn+1)]. (8)

In (8), if h is not invertible, then yn+1 can not be solved easily. Even if h is invertible, we have
to find the inverse of h. To have some numerical comparisons, let us consider the simplest case.
Let h be invertible, then from (8). Then

yn+1 = h−1(JA[h1(xn+1)− ηT2(xn+1)]).

It is easy to learn from [14] that the computational workload of computing the inverse of h is
O(N3), while the computational workload of our explicit algorithms in Algorithm 2.1-2.4 is
O(N) in the finite dimensional space RN . It shows that the workload of Algorithm 2.5 is much
more than that of our algorithms.

3. Main results

In this section, we study Algorithms 2.2 and we will show that our explicit algorithms work
well with strong convergence.

Lemma 3.1. If A is maximal monotone, JA is the resolvent operator defined in Definition 3.1,
and T is relaxed (γ, r)-cocoercive and µ-Lipschitzian continuous, then for any w1, w2 ∈ K, for
all ρ > 0,

||JA[w1 − ρTw1]− JA[w2 − ρTw2]|| ≤ θT ||w1 − w2||,
where θT =

√
1− 2ρ(r − γµ2) + ρ2µ2 ∈ (0, 1).

Proof. Since T is relaxed (γ, r)-cocoercive and µ-Lipschitzian continuous, then from (4), we
obtain

||JA[w1 − ρTw1]− JA[w2 − ρTw2]||2
≤ ||[w1 − ρTw1]− [w2 − ρTw2]||2
= ||(w1 − w2)− ρ(Tw1 − Tw2)||2
= ||w1 − w2||2 − 2ρ〈Tw1 − Tw2, w1 − w2〉+ ρ2||Tw1 − Tw2||2
≤ ||w1 − w2||2 − 2ρ[−γ||Tw1 − Tw2||2 + r||w1 − w2||2] + ρ2||Tw1 − Tw2||2
= (1− 2ρr)||w1 − w2||2 + (2ργ + ρ2)||Tw1 − Tw2||2
≤ (1− 2ρr)||w1 − w2||2 + (2ργ + ρ2)µ2||w1 − w2||2
= θ2

T ||w1 − w2||2,
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from which, we have

‖JA[w1 − ρTw1]− JA[w2ρTw2]‖ ≤ θT ‖w1 − w2‖,
the required result. ¤

We now investigate the strong convergence of Algorithm 2.2 and this is the main motivation
of our next result.

Theorem 3.1. Let (x∗, y∗) be the solution of (1). Let A,B : H → H be maximal monotone,
and let T1 : H → H be relaxed (γ1, r1)-cocoercive and µ1-Lipschitzian continuous, T2 : H → H

be relaxed (γ2, r2)-cocoercive and µ2-Lipschitzian continuous, g : H → H be relaxed (γ3, r3)-
cocoercive and µ3-Lipschitzian continuous, and h : H → H be relaxed (γ4, r4)-cocoercive and µ4-
Lipschitzian continuous. Then for arbitrary chosen initial points x0, y0 ∈ H, xn and yn obtained
from Algorithm 2.2 converge strongly to x∗ and y∗ respectively if the following conditions are
satisfied:

|ρ− r1 − γ1µ
2
1

µ2
1

| <
√

(r1 − γ1µ2
1)2 − µ2

1(2− k1 − k2)(k1 + k2)
µ2

1

, (9)

r1 > γ1µ
2
1 + µ1

√
(2− k1 − k2)(k1 + k2), (10)

|η − r2 − γ2µ
2
2

µ2
2

| <
√

(r2 − γ2µ2
2)2 − µ2

2(2− k1 − k2)(k1 + k2)
µ2

2

, (11)

r2 > γ2µ
2
2 + µ2

√
(2− k1 − k2)(k1 + k2), (12)

θg = k1 =
√

1− 2(r3 − γ3µ2
3) + µ2

3 < 1, (13)

θh = k2 =
√

1− 2(r4 − γ4µ2
4) + µ2

4 < 1, (14)

θT1 =
√

1− 2ρ(r1 − γ1µ2
1) + ρ2µ2

1, (15)

θT2 =
√

1− 2η(r2 − γ2µ2
2) + η2µ2

2 (16)

θ1 = θg + θh + θT1 , (17)

θ2 = θg + θh + θT2 , (18)

0 < θ2 < inf αn ≤ 1, αn ∈ (0, 1]. (19)

Proof. Let x∗, y∗ be the solution of (1).
Since g : H → H is relaxed (γ3, r3)-cocoercive and µ3-Lipschitzian continuous, by setting

w1 = yn, w2 = y∗ and ρ = 1, then by Lemma 3.1, we obtain

||(yn − y∗)− (g(yn)− g(y∗))|| ≤ θg||yn − y∗||, (20)

where θg is defined by (13). Similarly,

||(xn − x∗)− (g(xn)− g(x∗))|| ≤ θg||xn − x∗||. (21)

Since h : H → H is relaxed (γ4, r4)-cocoercive and µ4-Lipschitzian continuous, by setting
w1 = xn, w2 = x∗ and ρ = 1, then by Lemma 3.1, we obtain

||(xn − x∗)− (h(xn)− h(x∗))|| ≤ θh||xn − x∗||, (22)

where θh is defined by (14). Similarly,

||(yn − y∗)− (h(yn)− h(y∗))|| ≤ θh||yn − y∗||. (23)
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Since T1 : H → H is relaxed (γ1, r1)-cocoercive and µ1-Lipschitzian continuous, by setting
w1 = yn, w2 = y∗, then by Lemma 3.1, we have

||(yn − y∗)− ρ(T1(yn)− T1(y∗))|| ≤ θT1 ||yn − y∗||, (24)

where θT1 is defined by (15).
Since T2 : H → H is relaxed (γ2, r2)-cocoercive and µ2-Lipschitzian continuous, by setting

w1 = xn, w2 = x∗ and ρ = η, then by Lemma 3.1, we have

||(xn − x∗)− η(T2(xn)− T2(x∗))|| ≤ θT2 ||xn − x∗||, (25)

where θT2 is defined by (16).
Consequently by Algorithm 2.2, it follows from (6), g1 = g and h1 = h that

||xn+1 − x∗||
= ||(1− αn)xn + αn(xn − g(xn)) + αnJA[g(yn)− ρT1(yn)]

−[(1− αn)x∗ + αn(x∗ − g(x∗)) + αnJA[g(y∗)− ρT1(y∗)]||
≤ (1− αn)||xn − x∗||+ αn||(xn − x∗)− (g(xn)− g(x∗))||

+αn||JA[g(yn)− ρT1(yn)]− JA[g(y∗)− ρT1(y∗)]||
≤ (1− αn)||xn − x∗||+ αn||(xn − x∗)− (g(xn)− g(x∗))||

+αn||[g(yn)− ρT1(yn)]− [g(y∗)− ρT1(y∗)]||
≤ (1− αn)||xn − x∗||+ αn||(xn − x∗)− (g(xn)− g(x∗))||

+αn||(yn − y∗)− (g(yn)− g(y∗))||+ αn||(yn − y∗)− ρ(T1(yn)− T1(y∗))||
≤ (1− αn)||xn − x∗||+ αnθg||xn − x∗||+ αnθg||yn − y∗||+ αnθT1 ||yn − y∗||, (26)

where (26) is from (20),(21),(24). Meanwhile,

||yn+1 − y∗||
= ||yn − h(yn) + JB[h(xn)− ηT2(xn)]

−[y∗ − h(y∗) + JB[h(x∗)− ηT2(x∗)]||
= ||[(yn − y∗)− (h(yn)− h(y∗))] + (JB[h(xn)− ηT2(xn)]− JB[h(x∗)− ηT2(x∗)])||
≤ ||(yn − y∗)− (h(yn)− h(y∗))||+ ||JB[h(xn)− ηT2(xn)]− JB[h(x∗)− ηT2(x∗)]||
≤ ||(yn − y∗)− (h(yn)− h(y∗))||+ ||[h(xn)− ηT2(xn)]− [h(x∗)− ηT2(x∗)]||
≤ ||(yn − y∗)− (h(yn)− h(y∗))||

+||(xn − x∗)− (h(xn)− h(x∗))||+ ||(xn − x∗)− η(T2(xn)− T2(x∗))||
≤ θh||yn − y∗||+ θh||xn − x∗||+ θT2 ||xn − x∗||. (27)

where (27) is from (22),(23),(25).
Therefore, it follows from (26) and (27) that

[||xn+1 − x∗||+ ||yn+1 − y∗||]
≤ [(1− αn)||xn − x∗||+ αnθg||xn − x∗||+ αnθg||yn − y∗||+ αnθT1 ||yn − y∗||]

+[θh||yn − y∗||+ θh||xn − x∗||+ θT2 ||xn − x∗||]
= [(1− αn) + αnθg + θh + θT2 ] · ||xn − x∗||+ [αnθg + αnθT1 + θh] · ||yn − y∗||. (28)

Since θ1 = θg + θh + θT1 , θ2 = θg + θh + θT2 , then by the conditions (9)-(16), it is easy to check
that 0 < θ1 < 1 and 0 < θ2 < 1.
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Since from the condition (19), 0 < θ2 < inf αn ≤ 1, then there must exist a sufficiently
small positive constant a > 0 such that 0 < θ2 + a ≤ αn ≤ 1 for all n ≥ 0. Note that
θ2 = θg + θh + θT2 ∈ (0, 1), and αn ∈ (0, 1], thus in (28),

(1− αn) + αnθg + θh + θT2 ≤
≤ (1− αn) + θ2 ≤ (1− a) < 1.

On the other hand, it follows from αn ∈ (0, 1] that

αnθg + αnθT1 + θh ≤ θg + θT1 + θh = θ1 < 1.

Set θ = max{(1− a), θ1}. Thus 0 < θ < 1. Therefore, it follows from (28) that

[||xn+1 − x∗||+ ||yn+1 − y∗||] ≤
≤ θ[||xn − x∗||+ ||yn − y∗||].

Hence, we conclude that
lim

n→∞[||xn − x∗||+ ||yn − y∗||] = 0,

and
lim

n→∞ ||xn − x∗|| = lim
n→∞ ||yn − y∗||] = 0.

¤

If αn ≡ 1 for all n ≥ 0, then we have the following result as a special case of Theorem 4.1.

Theorem 3.2. Let (x∗, y∗) be the solution of (1). Let A,B : H → H be maximal monotone,
and let T1 : H → H be relaxed (γ1, r1)-cocoercive and µ1-Lipschitzian continuous, T2 : H → H

be relaxed (γ2, r2)-cocoercive and µ2-Lipschitzian continuous, g : H → H be relaxed (γ3, r3)-
cocoercive and µ3-Lipschitzian continuous, and h : H → H be relaxed (γ4, r4)-cocoercive and
µ4-Lipschitzian continuous. Then for arbitrary chosen initial points x0, y0 ∈ H, xn and yn

obtained from Algorithm 2.4 converge strongly to x∗ and y∗ respectively if the conditions (9)-
(18) are satisfied.

Proof. Observe that αn ≡ 1 for all n ≥ 0 and θ2 < 1. This implies that the condition (19)
is satisfied because θ2 < 1 ≡ αn. Hence, the desired result can be obtained by Theorem 3.1.
Indeed, since αn ≡ 1 for all n ≥ 0, then from (28),

[||xn+1 − x∗||+ ||yn+1 − y∗||] ≤
≤ [(1− αn) + αnθg + θh + θT2 ] · ||xn − x∗||+ [αnθg + αnθT1 + θh] · ||yn − y∗|| =
= [θg + θh + θT2 ] · ||xn − x∗||+ [θg + θT1 + θh] · ||yn − y∗||.

Observe that θ1 = θg + θh + θT1 < 1 and θ2 = θg + θh + θT2 < 1 by the conditions (9)-(16). Set
θ = max{θ1, θ2}, then it is clear that θ ∈ (0, 1). Therefore,

[||xn+1 − x∗||+ ||yn+1 − y∗||] ≤ θ · [||xn − x∗||+ ||yn − y∗||],
which hence implies that

lim
n→∞[||xn − x∗||+ ||yn − y∗||] = 0,

and
lim

n→∞ ||xn − x∗|| = lim
n→∞ ||yn − y∗||] = 0.

¤
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